Category Archives: CAS

Computer Algebra Systems

PreCalculus Summer Institute 2012

If you are in Atlanta, GA July 9-11, 2012, you might be interested in attending a workshop my co-author and I are offering at Westminster through the Center for Teaching.  A description of the workshop follows.  We hope to see some of you!

Title of Workshop:  PreCalculus Transformed
To register, click here.

PresentersChris Harrow & Nurfatimah Merchant from The Westminster Schools

Workshop Dates:  July 9-11, 2012 (Monday-Wednesday)

Workshop Description: PreCalculus Transformed highlights the under-explored role of non-standard transformations and function composition in learning algebra and precalculus concepts. Families of functions are identified first by immutable distinguishing characteristics and then modified through multiple representations & transformations. Participants will discover that many historically complicated precalculus problems and concepts are both richer and greatly simplified in this process. The course integrates computer algebra system (CAS) technology, but it is certainly possible to use and grasp its concepts without this technology.  Potential topics include expanded transformations, polynomials, rational functions, exponentials, logistics, and trigonometric functions.  Additional topics may be explored depending on time and participant needs or experience.  Textbook is included in the workshop price.

Target Audience:  Algebra II, Precalculus, and Calculus teachers at the high school or junior college level

Workshop Location:
The Center for Teaching at The Westminster Schools
1424 West Paces Ferry Road NW
Atlanta, GA 30327

Contact e-mail: chrish@westminster.net

An unexpected lesson from technology

This discovery happened a few years ago, but I’ve just started ‘blogging, so I guess it’s time to share this for the “first” time.

I forget whether my calculus class at the time was using the first version of the TI-Nspire CAS or if we were still on the TI-89, but I had planned a very brief introduction to the CAS syntax for computing symbolic derivatives, but my 5-minute introduction in the first week of introducing algebraic rules of derivatives ended up with my students discovering antiderivative rules simply because they had technology tools which allowed them to explore beyond where their teacher had intended them to go.

They had absolutely no problem computing algebraic derivatives of power functions, so the following example was used not to demonstrate the power of CAS, but to give easily confirmed outputs.  I asked them for the derivative of x^5, and their CAS gave the top line of the image below.

(In case there are readers who are TI-Nspire CAS users who don’t know the shortcut for computing higher order derivatives, use the left arrow to place the cursor after the dx in the “denominator” of \frac{d}{dx} and press the carot (^) key.  Then type the integer of the derivative you want.)

I wanted my students to compute the 2nd and 3rd derivatives and confirm the power rule which they did with the following screen.

That was the extent of what I wanted at the time–to establish that a CAS could quickly and easily confirm algebraic results whether or not a “teacher” was present.  Students could create as many practice problems as were appropriate for themselves and get their solutions confirmed immediately by a non-judgmental expert.  Of course, one of my students began to explore in ways my “trained” mind had long ago learned not to do.  In my earlier days of CAS, I had forgotten the unboundedness of mathematical exploration.

Shortly after my syntax 5-minutes had passed and I had confirmed everyone could handle it, a young man called me to his desk to show me the following.

He understood what a 1st or 2nd derivative was, but what in the world was a negative 1st derivative?  Rather than answering, I posed it to the class who pondered a few moments before recognizing that “underivatives” (as they called them in that moment) of power functions added one to the current exponent before dividing by the new exponent.  They had discovered and explained (at least algebraically) antiderivatives long before I had intended.  Technology actually inspired and extended my students’ learning!

Then I asked them what the CAS would give if we asked it for a 0th derivative.  It was another great technology-inspired discussion.

I really need to explore more about the connections between mathematics as a language and the parallel language of technology.

A student taught me

About 10 years ago, I was introducing a lesson on series in a calculus class. This course was the first for which I had a Computer Algebra System (CAS, in this case, a TI-89) in the hands of every student. I’ve learned that “off task” who are still engaged in the class are typically the most creative sources of ideas.

In this case, I was using the CAS as a support and verification tool on a lesson reviewing geometric series and introducing the harmonic series. At the end of class, a student approached me with his CAS in hand and an intensely puzzled look on his face. He asked, “How did this happen?” and showed me his calculator screen.

Note the power of the CAS in this instance to handle way more math than the student understood, but it definitely piqued his interest and mine with its handling of an infinite bound, and especially for they completely unexpected appearance of \pi^2. What in the world was going on here? Surely there must be some error.

I had no clue, but promised to get back to him within the next few days. After a week of trying to solve it on my own and not really knowing to engage a network for help, I humbly returned to my student and confessed that I simply didn’t have an answer for him even though the problem looked amazingly cool. I played with the problem off-and-on over the ensuing months until one Saturday afternoon two years later when I was reading a math article on Euler that offers his ideas on product series. [I had never studied such things. Whether my background should have been broader is an open question.]

If you don’t have the stomach or time or inclination to consume the proof that follows, please scroll to the last few paragraphs of this post for my general comments on the reach of this problem.

Spoiler Alert: If you want to explore why the series sum my student re-discovered is true, stop reading now!

The following proof may not be absolutely water-tight, but it is how I’ve come to understand Euler’s stunning solution.

If you remember Maclaurin Series from differential calculus, you might recall that the polynomial equivalent for the sine function at x=0 is sin(x)=\sum_{n=1}^{infnty}\frac{x}^{2n-1}{(2n-1)!}=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...

The connection I missed for two years was that this is just a polynomial, and polynomials can be factored. OK, sine’s not really a polynomial, but if you can approximate it as an expanded polynomial (the Maclaurin series above), why can’t you do the same in factored form?

So, the x-intercepts of sine are and by the typical manner of writing factored polynomials today, one would write But polynomial factors can also be written in the slightly more complicated form, , which actually ends of simplifying this problem significantly.

The coefficient A allows the factor (product) series to vertically stretch to fit any curve with the given roots. Notice, too, that the equidistant terms on either side of the x term are conjugates, so the series can be further rewritten as an infinite product of differences of squares.

But now there are two polynomials representing the same function, so the polynomials must be equivalent. Therefore,

a pretty amazing equivalence in its own right.

Whenever two polynomials are equivalent, their coefficients must be equal when the polynomials are written in the same form. To explore this, you can expand the product form. Notice that the Maclaurin polynomial doesn’t have a constant term, and neither does the factored term because any combination of terms from the product eventually must multiply by the Ax term. Continuing this reasoning, the only way to get a linear term is to take the Ax term and then multiply by the 1 from every single binomial factor. Anything else would yield a term with degree higher than 1. Equating the linear terms from the product expansion (Ax) and the Maclaurin series (x) proves that A=1.

You can reason why the product series cannot produce quadratic terms, so turn your attention now to the cubic terms. The only cubic terms in the expansion of the product series come from multiplying the leading x term by a quadratic term in ONE of the binomial factors and by the 1 terms in all of the remaining binomial factors. Collecting all of these cubic terms and equating them to the known Maclaurin cubic term gives

Factoring out allows the coefficients to compared and a minor re-arrangement from there proves my student’s result.

I’ve always been blown away by how quickly this proof collapses from very cumbersome equations into such a beautiful result. It also amazes me that while a sine function was used to leverage the proof, the final result conveys nothing of its presence. Equating higher order terms from the two series allows you to compute the value of for any even values of k, but odd powers of k greater than 1 are still an outstanding problem in mathematics. We know they converge; we simply don’t have closed form values for their sums. Anyone up for the challenge?

(By the way, you can read here some historical context and connections from this problem to much more substantial mathematics today, including a connection to the zeta function which underlies the current search for a proof to the prime number theorem.)

This is some pretty heady stuff for a student who just wanted to know what happened if you tweaked an expression a little bit. But then, isn’t that how all good math starts? My only regret is that the student who initially posed the problem graduated high school before we could find the answer to his question. The positive side is that hundreds of my students since then have been able to see this gorgeous connection.

I hope all my students know that I value their questions (no matter how shallow, deep, or off-topic) and that I learn more and become a better teacher with every new perspective they share.

Post-scripts (9/5/11) from communications with David Doster:  I knew that I was walking in the footsteps of others as I created the proof above on my own, but a serendipitous communication with a colleague I met at a 1993 Woodrow Wilson institute on the Mathematics of Change.  David pointed me toward Robin Chapman’s Home Page which includes 14 different proofs of this result–Euler’s (and my) proof is the 7th in that list.  This result has also been a favorite of William Dunham as published in his books Journey Through Genius and  Euler, The Master of Us All, both definitely worth reading.

Transforming inverse trig graphs

It all started when I tried to get an interesting variation on graphs of inverse trigonometric functions.  Tiring of constant scale changes and translations of inverse trig graphs, I tried i(x)=x*tan^{-1}x , thinking that this product of odd functions leading to an even function would be a nice, but minor, extension for my students.  

I reasoned that because the magnitude of arctangent approached \frac{\pi}{2} as x\rightarrow\infty, the graph of i(x)=x*tan^{-1}x must approach y=\frac{\pi}{2}|x| .  As shown and to my surprise, y=i(x) seemed to parallel the anticipated absolute value function instead of approaching it.  Hmmmm…..

If this is actually true, then the gap between i(x)=x*tan^{-1}x and y=\frac{\pi}{2}|x| must be constant.  I suspected that this was probably beyond the abilities of my precalculus students, but with my CAS in hand, I (and they) could compute that limit anyway. 

Now that was just too pretty to leave alone.  Because the values of x are positive for the limit, this becomes \displaystyle y=\frac{\pi}{2}|x|-x*tan^{-1}x=\frac{\pi}{2}x-x*tan^{-1}x=x*(\frac{\pi}{2}-tan^{-1}x) .

So, four things my students should see here (with guidance, if necessary) are

  1. i(x)=x*tan^{-1}x actually approaches y=\frac{\pi}{2}|x|-1,
  2. the limit can be expressed as a product,
  3. each of the terms in the product describes what is happening to the individual terms of the factors of i(x) as x approaches infinity, and
  4. (disturbingly) this limit seems to approach \infty*0.  A less-obvious recognition  is that as x\rightarrow\infty, \frac{\pi}{2}-tan^{-1}x  must behave exactly like \frac{1}{x} because its product with x becomes 1,

But what do I do with this for my precalculus students? 

NOTE:  As a calculus teacher, I immediately recognized the \infty*0 product as a precursor to L’Hopital’s rule.

\displaystyle\lim_{x\to\infty} [x*(\frac{\pi}{2}-tan^{-1}x)]\rightarrow\infty*0
=\displaystyle\lim_{x\to\infty}\frac{\frac{\pi}{2}-tan^{-1}x}{\frac{1}{x}}\rightarrow\frac{0}{0}
and this form permits L’Hopital’s rule
=\displaystyle\lim_{x\to\infty}\frac{\frac{-1}{\displaystyle 1+x^2}}{\frac{-1}{\displaystyle x^2}}
\displaystyle=\lim_{x\to\infty}\displaystyle\frac{x^2}{1+x^2}=1

OK, that proves what the graph suggests and the CAS computes.  Rather than leaving students frustrated with a point in a problem that they couldn’t get past (determining the gap between the suspected and actual limits), the CAS kept the problem within reach.  Satisfying enough for some, I suspect, but I’d love suggestions on how to make this particular limit more attainable for students without invoking calculus.  Ideas, anyone?

CAS for All

Every student should have access to a CAS (Computer Algebra System) in a handheld and/or computer-based format at least as early as he or she begins learning algebraic concepts.

Used properly, a CAS creates a dynamic laboratory environment for a student in which he or she can explore algebraic relationships, receive  instantaneous confirmation of the validity of algebraic manipulations, and scaffolding for deeper exploration and understanding of mathematics.  In short, a CAS enables a student to have a mathematical solving expert available at all times in all places.  Most importantly, students get the opportunity to explore mathematics without needing

Of course, to use a CAS, one needs to learn how to ask questions and how to interpret the solutions.  A CAS will always provide an answer to the question asked.  Users must know precisely what is being asked so that they can interpret their results.